domingo, 17 de agosto de 2014

HISTORIA DEL CÁLCULO




COLEGIO DE ESTUDIOS CIENTÍFICOS Y TECNOLÓGICOS DEL ESTADO DE OAXACA










“HISTORIA DEL CÁLCULO”




DOCENTE: ING. JOEL ALEGRÍA SALINAS

ASIGNATURA: CÁLCULO DIFERENCIAL

SEMESTRE: V      GRUPO:501

ALUMNOS: FRANCISCO GREGORIO MARCIAL
 MARISOL PASCUAL HERNÁNDEZ
OMAR LABASTIDA HERNÁNDEZ
RUBI BAUTISTA CRUZ
YESENIA BAUTISTA CRUZ

CICLO ESCOLAR: 2014-1


"No hay certidumbre allí donde no es posible aplicar ninguna de las ciencias matemáticas ni ninguna de las basadas en las matemáticas"
Leonardo Da Vinci 


INTRODUCCIÓN:
  

El Cálculo Diferencial e Integral es una herramienta matemática que surgió en el siglo XVII para resolver algunos problemas de geometría y de física. El problema de hallar una recta tangente a la gráfica de una función en un punto dado y la necesidad de explicar racionalmente los fenómenos de la astronomía o la relación entre distancia, tiempo, velocidad y aceleración, estimularon la invención y el desarrollo de los métodos del Cálculo.
Sobresalieron entre sus iniciadores John Wallis, profesor de la Universidad de Oxford e Isaac Barrow, profesor de Newton en la Universidad de Cambridge, Inglaterra. Pero un método general de diferenciación e integración fue descubierto solo hacia 1665 por el Inglés Isaac Newton y posteriormente por Gottfried Wilhelm Von Leibniz, nacido en Leipziy, Alemania, por lo que a ellos se les atribuye la invención del Cálculo.

En la actualidad el Cálculo se aplica al estudio de problemas de diversas áreas de la actividad humana y de la naturaleza: la economía, la industria, la física, la química, la biología, para determinar los valores máximos y mínimos de funciones, optimizar la producción y las ganancias o minimizar costos de operación y riesgos.

Objetos de aprendizaje

·       Evolución del Cálculo

·       Modelos matemáticos: un acercamiento a máximos y mínimos.






 COMPETENCIAS A DESARROLLAR:




·       *Explica e interpreta los resultados obtenidos en el análisis de la evolución histórica del estudio del cálculo y los contrasta con su aplicación en situaciones reales.

·      *Enfrenta las dificultades que se le presentan y es consciente de sus valores, fortalezas y debilidades al trabajar los modelos matemáticos.










El Cálculo Infinitesimal es la rama de las matemáticas que comprende el estudio y aplicaciones del Cálculo Diferencial e Integral.
El Cálculo es la matemática del cambio: velocidades y aceleraciones. Cálculo es también la matemática de rectas tangentes, pendientes, áreas, volúmenes, longitudes de arco, centroides, curvaturas y otros diversos conceptos que han hecho que los científicos, ingenieros y economistas puedan modelar situaciones de la vida real.
El cálculo es fundamentalmente diferente de las matemáticas que hayas estudiado con anterioridad. Aunque las matemáticas previas al cálculo también versan sobre velocidades, aceleraciones, rectas tangentes, etc., aquí se tiene una diferencia fundamental entre las matemáticas previas y el propio cálculo: las matemáticas previas al cálculo son más estáticas, en tanto que el cálculo es más dinámico. El cálculo se interesa en el cambio y en el movimiento; trata de cantidades que se aproximan a otras cantidades. Podríamos  definir al Cálculo como la parte de las matemáticas que trata con límites.






 ANTECEDENTES
 

Los orígenes del cálculo se remontan unos 2500 años por lo menos, hasta los antiguos griegos, quienes hallaron áreas aplicando el “método de agotamiento”. Sabían cómo hallar el área de cualquier polígono al dividirlo en triángulos (método de triangulación), y sumar las áreas de estos triángulos A

Los griegos no aplicaron explícitamente los límites. Sin embargo, por razonamiento indirecto, Eudoxo (siglo v a. n. e.) utilizó el agotamiento para probar la conocida fórmula del área de un círculo: . 2 r A
Zenón de Elea, alrededor de 450 a. C., planteó una serie de problemas que estaban basados en el infinito. Por ejemplo, argumentó que el movimiento es imposible:
Si un cuerpo se mueve de A a B entonces, antes de llegar a B pasa por el punto medio, B1, de AB. Ahora bien, para llegar a B1 debe primero pasar por el punto medio B2 de AB1. Continuando con este argumento se puede ver que A debe moverse a través de un número infinito de distancias y por lo tanto no puede moverse.
Leucipo, Demócrito y Antifon hicieron contribuciones al método exhaustivo griego al que Eudoxo dio una base científica alrededor de 370 a. C. El método se llama exhaustivo ya que considera las áreas medidas como expandiéndolas de tal manera que cubran más y más del área requerida.

 Sin embargo, Arquímedes, alrededor de 225 a. C. hizo uno de las contribuciones griegas más significativas. Su primer avance importante fue demostrar que el área de un segmento de parábola es 4/3 del área del triángulo con los mismos base y vértice y es igual a 2/3 del
área del paralelogramo circunscrito. Arquímedes construyó una secuencia infinita de triángulos empezando con uno de área A y añadiendo continuamente más triángulos entre los existentes y la parábola para obtener áreas.

  No hubo más progresos hasta el siglo XVI cuando la mecánica empezó a llevar a los matemáticos a examinar problemas como el de los centros de gravedad. Luca Valerio (1552-1618) publicó De quadratura parabolae en Roma (1606) que continuaba los métodos griegos para atacar este tipo de problemas de calcular áreas.

 Descartes produjo un importante método para deteminar normales en La Géometrie en 1637 basado en la doble intersección. De Beaune extendió sus métodos y los aplicó a las tangentes; en este caso la doble intesección se traduce en raíces dobles. Hudde descubrió un método más sencillo, llamado la Regla de Hudde, que básicamente involucra a la derivada. El método de Descartes y la Regla de Hudde tuvieron una influencia importante sobre Newton.
Tanto Torricelli como Barrow estudiaron el problema del movimiento con velocidad variable. La derivada de la distancia es la velocidad y la operación inversa nos lleva de la velocidad a la distancia. De aquí empezó a evolucionar naturalmente una concienciación de la inversa de la diferenciación y que Barrow estuviera familiarizado con la idea de que integral y derivada son inversas una de otra. De hecho, aunque Barrow nunca afirmó explícitamente el teorema fundamental del cálculo, estaba trabajando hacia el resultado y Newton continuaría en esta dirección y daría explícitamente el Teorema Fundamental del Cálculo.






ORIGEN DEL CÁLCULO.

El Cálculo Diferencial se origina en el siglo XVII al realizar estudios sobre el movimiento, es decir, al estudiar la velocidad de los cuerpos al caer al vacío ya que cambia de un momento a otro; la velocidad en cada instante debe calcularse teniendo en cuenta la distancia que recorre en un tiempo infinitesimalmente pequeño.


En 1666 Sir Isaac Newton (1642-1727), fue el primero en desarrollar métodos matemáticos para resolver problemas de esta índole. Inventó su propia versión del cálculo para explicar el movimiento de los planetas alrededor del Sol. Newton concibió el llamado Método de las Fluxiones, considerando a la curva como la trayectoria de un punto que fluye; denomina “momentum” de la cantidad de fluente al arco mucho muy corto, recorrido en un tiempo excesivamente pequeño, llamando la “razón del momentum” al tiempo correspondiente es decir, la velocidad.


Casi al mismo tiempo, el filósofo y matemático alemán Gottfried Wilhelm Leibniz (1646- 1716), realizó investigaciones similares e ideando símbolos matemáticos que se aplican hasta nuestros días. La concepción de Leibniz se logra al estudiar el problema de las tangentes y su inverso, basándose en el Triángulo Característico de Barrow, observando
que dicho triángulo al que se forma con la tangente, la subtangente y la ordenada del punto de tangencia, así mismo, es igual al triángulo formado por la Normal, la Subnormal y la ordenada del mismo punto. Los símbolos , la palabra “derivada” y el nombre de “ecuaciones diferenciales” se deben a Leibniz. dx dy dx.
La notación d y ∫ de Leibniz destacaban el aspecto de operadores que probaría ser importante más adelante. Para 1675, Leibniz se había quedado con la notación
∫y dy = y²/2
escrita exactamente como se hace hoy. Sus resultados sobre cálculo integral fueron publicados en 1864 y 1686 con el nombre de calculus summatorius; el término 'cálculo integral' fue sugerido por Jacobo Bernoulli en 1690.
Después de Newton y Leibniz, el desarrollo del cálculo fue continuado por Jacobo Bernoulli y Johann Bernoulli. Sin embargo, cuando Berkeley publicó su Analyst en 1734 atacando la falta de rigor en el cálculo y disputando la lógica sobre la que se basaba, entonces se hicieron grandes esfuerzos para amarrar el razonamiento. Maclaurin intentó poner el cálculo sobre una base geométrica rigurosa pero sus fundamentos realmente satisfactorios tendrían que esperar al trabajo de Cauchy en el siglo XIX.

Destacan otros matemáticos por haber hecho trabajos importantes relacionados con el Cálculo Diferencial, sobresaliendo entre otros, los siguientes:
Pierre Fermat (1601-1665), matemático francés, quien en su obra habla de los métodos diseñados para determinar los máximos y mínimos, acercándose casi al descubrimiento del Cálculo Diferencial, mucho antes que Newton y Leibniz. Dicha obra influenció en Leibniz en la invención del Cálculo Diferencial.


Johannes Kepler, tiempo después, coincide con lo establecido por Oresme, conceptos que permitieron a Fermat en su estudio de máximos y mínimos, las tangentes y las cuadraturas, igualar a cero la derivada de la función, debido a que la tangente a la curva  en los puntos en que la función tiene su máximo o mínimo, es decir, la función es paralela al eje donde la pendiente de la tangente es nula. X




Isaac Barrow (Londres, 1630 - id., 4 de mayo,1677), maestro de Newton, construyó el “triángulo característico”, en donde la hipotenusa es un arco infinitesimal de curva y sus catetos son incrementos infinitesimales en que difieren las abscisas y las ordenadas de los extremos del arco.

Joseph-Louis Lagrange (1736-1813), quien demostró por primera vez el Teorema del Valor Medio.
Augustin-Louis Cauchy (París, 21 de agosto de 1789- Sceaux, 23 de mayo de 1857), matemático francés, impulsor del Cálculo Diferencial e Integral, autor de La Teoría de las Funciones de las Variables Complejas, se basó en el método de los límites; las definiciones de “función de función” y la de “función compuesta” se deben a él. El concepto de función continua fue introducido por primera vez por él en 1821.
Leonhard Euler (1707-1783). La simbología se debe a él, quien además de hacer importantes contribuciones a casi todas las ramas de las matemáticas, fue uno de los primeros en aplicar el cálculo a problemas de la vida real en la Física. Sus extensos escritos publicados incluyen temas como construcción de barcos, acústica, óptica, astronomía, mecánica y magnetismo.
John Wallis (Ashford, 23 de noviembre de 1616 – Oxford, 28 de octubre de 1703), enuncia el concepto de “límite”.
La representación simbólica “lím” se debe a Simón Lhuilier (n. Ginebra, Suiza el 24 de abril de 1750, f. en Ginebra el 28 de marzo de 1840).
El símbolo “tiende a” lo propuso J. G. Leathem.

A continuación aparecen los nombres surgidos en las diferentes épocas, los logros más importantes de algunos de ellos y reseñas biográficas de quienes realizaron los aportes más relevantes al nacimiento del cálculo y la integral definida.




Antes de Cristo

PITÁGORAS de SAMOS (580-500 a.C.)
ZENÓN DE ELEA (490-425 a.C.)
PLATÓN (427-347 a.C.)
EUDOXO de CNIDUS (408-355 a.C.): creador del método de exhaución
ARQUÍMEDES (287-212 a.C.): nativo de Siracusa, Sicilia estudió en Alejandría. Desarrolló métodos infinitesimales. Hizo una de las más significativas contribuciones griegas, utilizó el método de exhaució
Siglo XVI
SIMON STEVIN (1548-1620)
BONAVENTURA CAVALIERI (1598-1647): desarrolló un método de lo indivisible, el cual llegó a ser un factor en el desarrollo del Cálculo Integral. Su método consiste en comparar proporcionalmente los indivisibles de volúmenes o áreas de cuerpos o figuras por encontrar, con los respectivos indivisibles de figuras o cuerpos cuyas áreas o volúmenes se conocen.

Siglo XVII

PIERRE DE FERMAT (1601-1665): desarrolló métodos ingeniosos y útiles para encontrar máximos y mínimos. Trata de encontrar pruebas más o menos rigurosas de la conjetura de Cavalieri.
GILLES DE ROBERVAL (1602-1675)
EVANGELISTA TORRICELLI (1608-1647): volúmenes generados por la rotación de ciertas curvas. Discípulo de Galileo Galilei.
JOHN WALLIS (1616-1703): tuvo una influencia decisiva en los primeros desarrollos del trabajo matemático de Newton
CRISTIAN HUYGENS (1629-1695)
MICHEL ROLLE (1652-1719)
JACOB BERNOULLI (1654-1705): matemático suizo que se carteaba con frecuencia con Leibniz, acuñó la palabra integral como término del cálculo en el año 1690.
GUILLAUME FRANCOIS ANTOINE MARQUIS L´HOPITAL (1661-1704): escribió el primer libro de cálculo en el año 1696 influenciado por las lecturas que realizaba de sus profesores Bernoulli y Leibniz.
BROOK TAYLOR (1685-1731)
COLIN MACLAURIN (1698-1746)
Siglo XVIII

LEONARD EULER (1707-1783)
THOMAS SIMPSON (1710-1761): sus principales trabajos se refieren a interpolación y métodos numéricos de integración.
ALEXIS CLAUDE CLAIRAUT (1713-1765)
MARIA GAËTANA AGNESI (1718-1799)
JOSEPH LOUIS LAGRANGE (1736-1813)
MARQUÉS DE CONDORCET (1743-1794)
GASPARD MONGE (1746-1818)
PIERRE SIMON DE LAPLACE (1749-1827)
ADRIEN LEGENDRE (1752-1833)
LAZARE CARNOT (1753-1823)
CARL FRIEDRICH GAUSS (1777-1813)
BERNARD BOLZANO (1781-1848)
AGUSTIN-LOUIS CAUCHY (1789-1857): trabajó en la tarea de dar una definición precisa de "función continua".
GEORGE GREEN (1793-1841)
Siglo XIX

NIELS ABEL (1802-1829)
KARL WEIERSTRASS (1815-1897)
GEORGE GABRIEL STOKES (1819-1903)
GEORG FRIEDRICH BERNHARD RIEMANN (1826-1866)
RICHARD DEDEKIND (1831-1916)
JOSIAH WILLARD GIBBS (1839-1903)
GEORG CANTOR (1845-1918)
SOFÍA KOVALEVSKY (1850-1891)
HENRI LÉON LEBESGUE (1875-1941)
Siglo XX
ANDREY NIKOLAEVICH KOLMOGOROV (1903-1987)
JOHN VON NEUMANN (1903-1957)
JEAN ALEXANDRE EUGENÈ DIEUDONNÉ (1906-1992)
NICOLÁS BOURBAKI (1939-1967): seudónimo adoptado por un grupo de matemáticos franceses.









 CONCLUSIÓN:




En conclusión, está demás recalcar que la información anterior ha sido produce años de investigación por muchos y diversos científicos, físicos, matemáticos
Estructurando lo que hoy conocemos como “Cálculo”, basado en distintas ramas de la asignatura como geometría, algebra y trigonometría.
Esta asignatura es de gran importancia para el desarrollo del área tecnológica de las distintas ingenierías; mecánica, biotecnología ,electrónica, aeronáutica, química. O en el área administrativa; contaduría, economía, etc.
En fin, entendemos que el cálculo es de suma relevancia en nuestras vidas ya seamos “productores o consumidores” de sus resultados.





Matematicas gifs imagenes

BIBLIOGRAFIAS:



·      Stewart, H., et al. (2010). Introducción al cálculo. México: Thompson.
·      Salazar, G., Bahena R. y Vega H., (2007). Cálculo Diferencial. México: Grupo Editorial Patria.

3 comentarios:

  1. Un blog muy completo, me ayudó con mi tarea ¡Gracias! ;)

    ResponderBorrar
  2. Muy bonito el trabajo, su contenido también esta muy completo y esta perfecto para poder despejar las dudas. Acerca de la creación del calculo.
    creo que las imágenes también complementan mucho.

    FELICIDADES POR ESTE BLOG. :D

    ResponderBorrar
  3. Equipo 4: el trabajo contiene una forma fácil de poder comprender el significado del calculo, así como se da a conocer los distintos personajes que tuvieron que ver con la contribución al desarrollo al calculo y sus fechas en que se desarrollaron... como conclusión única podemos decir que es un trabajo llamativo que incluye información de sencillo entendimiento

    ResponderBorrar